logarithmic-trigonometric table - определение. Что такое logarithmic-trigonometric table
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое logarithmic-trigonometric table - определение

OVERVIEW ABOUT TRIGONOMETRIC TABLES
Generating sinus-tables; Sine table; Generating trigonometric tables; Trigonometric table; Trig table; Sine tables; Tangent tables; Tangent table
  • A page from a 1619 book of [[mathematical table]]s.

Trigonometric tables         
In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering.
Sheaf of logarithmic differential forms         
MEROMORPHIC DIFFERENTIAL FORM WITH POLES OF A CERTAIN KIND
Logarithmic Kähler differentials; Sheaf of logarithmic differential forms; Logarithmic differential form; Logarithmic Kähler differential
In algebraic geometry, the sheaf of logarithmic differential p-forms \Omega^p_X(\log D) on a smooth projective variety X along a smooth divisor D = \sum D_j is defined and fits into the exact sequence of locally free sheaves:
Logarithmic form         
MEROMORPHIC DIFFERENTIAL FORM WITH POLES OF A CERTAIN KIND
Logarithmic Kähler differentials; Sheaf of logarithmic differential forms; Logarithmic differential form; Logarithmic Kähler differential
In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne.

Википедия

Trigonometric tables

In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.

Modern computers and pocket calculators now generate trigonometric function values on demand, using special libraries of mathematical code. Often, these libraries use pre-calculated tables internally, and compute the required value by using an appropriate interpolation method. Interpolation of simple look-up tables of trigonometric functions is still used in computer graphics, where only modest accuracy may be required and speed is often paramount.

Another important application of trigonometric tables and generation schemes is for fast Fourier transform (FFT) algorithms, where the same trigonometric function values (called twiddle factors) must be evaluated many times in a given transform, especially in the common case where many transforms of the same size are computed. In this case, calling generic library routines every time is unacceptably slow. One option is to call the library routines once, to build up a table of those trigonometric values that will be needed, but this requires significant memory to store the table. The other possibility, since a regular sequence of values is required, is to use a recurrence formula to compute the trigonometric values on the fly. Significant research has been devoted to finding accurate, stable recurrence schemes in order to preserve the accuracy of the FFT (which is very sensitive to trigonometric errors).